Hiding in Plain Sight: The Anatomy of Malicious Pages on Facebook
نویسندگان
چکیده
Facebook is the world’s largest Online Social Network, having more than 1 billion users. Like most social networks, Facebook is home to various categories of hostile entities who abuse the platform by posting malicious content. In this chapter, we identify and characterize Facebook pages that engage in spreading URLs pointing to malicious domains. We revisit the scope and definition of what is deemed as “malicious” in the modern day Internet, and identify 627 pages publishing untrustworthy information, misleading content, adult and child unsafe content, scams, etc. We perform in-depth characterization of pages through spatial and temporal analysis. Upon analyzing these pages, our findings reveal dominant presence of politically polarized entities engaging in spreading content from untrustworthy web domains. Studying the temporal posting activity of pages reveal that malicious pages are 1.4 times more active daily than benign pages. We further identify collusive behavior within a set of malicious pages spreading adult and pornographic content. Finally, we attempt to automate the process of detecting malicious Facebook pages by extensively experimenting with multiple supervised learning algorithms and multiple feature sets. Artificial neural networks trained on a fixed sized bag-of-words perform the best and achieve a maximum ROC area under curve value of 0.931.
منابع مشابه
Hiding in Plain Sight: The Anatomy of Malicious Facebook Pages
Facebook is the world’s largest Online Social Network, having more than 1 billion users. Like most other social networks, Facebook is home to various categories of hostile entities who abuse the platform by posting malicious content. In this paper, we identify and characterize Facebook pages that engage in spreading URLs pointing to malicious domains. We used the Web of Trust API to determine d...
متن کاملAnalyzing new features of infected web content in detection of malicious web pages
Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...
متن کاملBehavioral Analysis of Review Fraud: Linking Malicious Crowdsourcing to Amazon and Beyond
We exploit the prevalence of malicious review writers on crowdsourcing platforms like RapidWorkers to identify actual fraud reviews on Amazon. Complementary to previous efforts which often rely on proxies for fraud reviews, we present a long-term study of actual fraudulent behaviors in online review manipulation. We find that these malicious reviewers – though often providing seemingly legitima...
متن کاملDetecting Malicious Content on Facebook
Online Social Networks (OSNs) witness a rise in user activity whenever an event takes place. Malicious entities exploit this spur in user-engagement levels to spread malicious content that compromises system reputation and degrades user experience. It also generates revenue from advertisements, clicks, etc. for the malicious entities. Facebook, the world’s biggest social network, is no exceptio...
متن کاملEngagement Patterns of High and Low Academic Performers on Facebook Anatomy Pages
Only a few studies have investigated how students use and respond to social networks in the educational context as opposed to social use. In this study, the engagement of medical students on anatomy Facebook pages was evaluated in view of their academic performance. High performers contributed to most of the engagements. They also had a particular preference for higher levels of engagement. Alt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017